MakeItFrom.com
Menu (ESC)

EN 1.4807 Stainless Steel vs. C86400 Bronze

EN 1.4807 stainless steel belongs to the iron alloys classification, while C86400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4807 stainless steel and the bottom bar is C86400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 4.5
17
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 75
40
Tensile Strength: Ultimate (UTS), MPa 480
470
Tensile Strength: Yield (Proof), MPa 250
150

Thermal Properties

Latent Heat of Fusion, J/g 320
170
Maximum Temperature: Mechanical, °C 1000
120
Melting Completion (Liquidus), °C 1390
880
Melting Onset (Solidus), °C 1350
860
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 12
88
Thermal Expansion, µm/m-K 15
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
19
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
22

Otherwise Unclassified Properties

Base Metal Price, % relative 39
23
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 6.8
2.8
Embodied Energy, MJ/kg 97
48
Embodied Water, L/kg 190
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
63
Resilience: Unit (Modulus of Resilience), kJ/m3 160
110
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 17
16
Strength to Weight: Bending, points 17
17
Thermal Diffusivity, mm2/s 3.2
29
Thermal Shock Resistance, points 12
16

Alloy Composition

Aluminum (Al), % 0
0.5 to 1.5
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0
56 to 62
Iron (Fe), % 36.6 to 46.7
0.4 to 2.0
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 2.0
0.1 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 34 to 36
0 to 1.0
Niobium (Nb), % 1.0 to 1.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
34 to 42
Residuals, % 0
0 to 1.0