MakeItFrom.com
Menu (ESC)

EN 1.4807 Stainless Steel vs. C90200 Bronze

EN 1.4807 stainless steel belongs to the iron alloys classification, while C90200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4807 stainless steel and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
70
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 4.5
30
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 75
41
Tensile Strength: Ultimate (UTS), MPa 480
260
Tensile Strength: Yield (Proof), MPa 250
110

Thermal Properties

Latent Heat of Fusion, J/g 320
200
Maximum Temperature: Mechanical, °C 1000
180
Melting Completion (Liquidus), °C 1390
1050
Melting Onset (Solidus), °C 1350
880
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 12
62
Thermal Expansion, µm/m-K 15
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
13
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
13

Otherwise Unclassified Properties

Base Metal Price, % relative 39
34
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 6.8
3.3
Embodied Energy, MJ/kg 97
53
Embodied Water, L/kg 190
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
63
Resilience: Unit (Modulus of Resilience), kJ/m3 160
55
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 17
8.3
Strength to Weight: Bending, points 17
10
Thermal Diffusivity, mm2/s 3.2
19
Thermal Shock Resistance, points 12
9.5

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0
91 to 94
Iron (Fe), % 36.6 to 46.7
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 34 to 36
0 to 0.5
Niobium (Nb), % 1.0 to 1.8
0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 1.0 to 2.5
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6