MakeItFrom.com
Menu (ESC)

EN 1.4818 Stainless Steel vs. 201.0 Aluminum

EN 1.4818 stainless steel belongs to the iron alloys classification, while 201.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4818 stainless steel and the bottom bar is 201.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
95 to 140
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 40
4.4 to 20
Fatigue Strength, MPa 280
120 to 150
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 480
290
Tensile Strength: Ultimate (UTS), MPa 700
370 to 470
Tensile Strength: Yield (Proof), MPa 330
220 to 400

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 1050
170
Melting Completion (Liquidus), °C 1410
650
Melting Onset (Solidus), °C 1370
570
Specific Heat Capacity, J/kg-K 490
870
Thermal Conductivity, W/m-K 17
120
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
30 to 33
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
87 to 97

Otherwise Unclassified Properties

Base Metal Price, % relative 16
38
Density, g/cm3 7.7
3.1
Embodied Carbon, kg CO2/kg material 3.1
8.7
Embodied Energy, MJ/kg 44
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
19 to 63
Resilience: Unit (Modulus of Resilience), kJ/m3 270
330 to 1160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
45
Strength to Weight: Axial, points 25
33 to 42
Strength to Weight: Bending, points 23
37 to 44
Thermal Diffusivity, mm2/s 4.5
45
Thermal Shock Resistance, points 15
19 to 25

Alloy Composition

Aluminum (Al), % 0
92.1 to 95.1
Carbon (C), % 0.040 to 0.080
0
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
4.0 to 5.2
Iron (Fe), % 65.6 to 71.8
0 to 0.15
Magnesium (Mg), % 0
0.15 to 0.55
Manganese (Mn), % 0 to 1.0
0.2 to 0.5
Nickel (Ni), % 9.0 to 11
0
Nitrogen (N), % 0.12 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 1.0 to 2.0
0 to 0.1
Silver (Ag), % 0
0.4 to 1.0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0.15 to 0.35
Residuals, % 0
0 to 0.1