MakeItFrom.com
Menu (ESC)

EN 1.4818 Stainless Steel vs. B443.0 Aluminum

EN 1.4818 stainless steel belongs to the iron alloys classification, while B443.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4818 stainless steel and the bottom bar is B443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
43
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 40
4.9
Fatigue Strength, MPa 280
55
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 480
110
Tensile Strength: Ultimate (UTS), MPa 700
150
Tensile Strength: Yield (Proof), MPa 330
50

Thermal Properties

Latent Heat of Fusion, J/g 300
470
Maximum Temperature: Mechanical, °C 1050
170
Melting Completion (Liquidus), °C 1410
620
Melting Onset (Solidus), °C 1370
600
Specific Heat Capacity, J/kg-K 490
900
Thermal Conductivity, W/m-K 17
150
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
38
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
130

Otherwise Unclassified Properties

Base Metal Price, % relative 16
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 3.1
8.0
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 150
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 270
18
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
52
Strength to Weight: Axial, points 25
15
Strength to Weight: Bending, points 23
23
Thermal Diffusivity, mm2/s 4.5
61
Thermal Shock Resistance, points 15
6.8

Alloy Composition

Aluminum (Al), % 0
91.9 to 95.5
Carbon (C), % 0.040 to 0.080
0
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
0 to 0.15
Iron (Fe), % 65.6 to 71.8
0 to 0.8
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.35
Nickel (Ni), % 9.0 to 11
0
Nitrogen (N), % 0.12 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 1.0 to 2.0
4.5 to 6.0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15