MakeItFrom.com
Menu (ESC)

EN 1.4818 Stainless Steel vs. EN AC-44000 Aluminum

EN 1.4818 stainless steel belongs to the iron alloys classification, while EN AC-44000 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4818 stainless steel and the bottom bar is EN AC-44000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
51
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 40
7.3
Fatigue Strength, MPa 280
64
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 700
180
Tensile Strength: Yield (Proof), MPa 330
86

Thermal Properties

Latent Heat of Fusion, J/g 300
560
Maximum Temperature: Mechanical, °C 1050
170
Melting Completion (Liquidus), °C 1410
590
Melting Onset (Solidus), °C 1370
590
Specific Heat Capacity, J/kg-K 490
910
Thermal Conductivity, W/m-K 17
140
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
36
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
130

Otherwise Unclassified Properties

Base Metal Price, % relative 16
9.5
Density, g/cm3 7.7
2.5
Embodied Carbon, kg CO2/kg material 3.1
7.8
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 150
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
11
Resilience: Unit (Modulus of Resilience), kJ/m3 270
51
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 25
55
Strength to Weight: Axial, points 25
20
Strength to Weight: Bending, points 23
28
Thermal Diffusivity, mm2/s 4.5
61
Thermal Shock Resistance, points 15
8.4

Alloy Composition

Aluminum (Al), % 0
87.1 to 90
Carbon (C), % 0.040 to 0.080
0
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 65.6 to 71.8
0 to 0.19
Magnesium (Mg), % 0
0 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 9.0 to 11
0
Nitrogen (N), % 0.12 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 1.0 to 2.0
10 to 11.8
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1