MakeItFrom.com
Menu (ESC)

EN 1.4818 Stainless Steel vs. EN AC-45400 Aluminum

EN 1.4818 stainless steel belongs to the iron alloys classification, while EN AC-45400 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4818 stainless steel and the bottom bar is EN AC-45400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
86
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 40
6.7
Fatigue Strength, MPa 280
55
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 700
260
Tensile Strength: Yield (Proof), MPa 330
130

Thermal Properties

Latent Heat of Fusion, J/g 300
470
Maximum Temperature: Mechanical, °C 1050
170
Melting Completion (Liquidus), °C 1410
630
Melting Onset (Solidus), °C 1370
560
Specific Heat Capacity, J/kg-K 490
880
Thermal Conductivity, W/m-K 17
140
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
95

Otherwise Unclassified Properties

Base Metal Price, % relative 16
10
Density, g/cm3 7.7
2.8
Embodied Carbon, kg CO2/kg material 3.1
7.8
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 150
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
14
Resilience: Unit (Modulus of Resilience), kJ/m3 270
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 25
25
Strength to Weight: Bending, points 23
32
Thermal Diffusivity, mm2/s 4.5
54
Thermal Shock Resistance, points 15
12

Alloy Composition

Aluminum (Al), % 0
88.4 to 92.9
Carbon (C), % 0.040 to 0.080
0
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
2.6 to 3.6
Iron (Fe), % 65.6 to 71.8
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.55
Nickel (Ni), % 9.0 to 11
0 to 0.1
Nitrogen (N), % 0.12 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 1.0 to 2.0
4.5 to 6.0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15