MakeItFrom.com
Menu (ESC)

EN 1.4818 Stainless Steel vs. C82500 Copper

EN 1.4818 stainless steel belongs to the iron alloys classification, while C82500 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4818 stainless steel and the bottom bar is C82500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 40
1.0 to 20
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
45
Tensile Strength: Ultimate (UTS), MPa 700
550 to 1100
Tensile Strength: Yield (Proof), MPa 330
310 to 980

Thermal Properties

Latent Heat of Fusion, J/g 300
240
Maximum Temperature: Mechanical, °C 1050
280
Melting Completion (Liquidus), °C 1410
980
Melting Onset (Solidus), °C 1370
860
Specific Heat Capacity, J/kg-K 490
390
Thermal Conductivity, W/m-K 17
130
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
20
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
21

Otherwise Unclassified Properties

Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 3.1
10
Embodied Energy, MJ/kg 44
160
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
11 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 270
400 to 4000
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 25
18 to 35
Strength to Weight: Bending, points 23
17 to 27
Thermal Diffusivity, mm2/s 4.5
38
Thermal Shock Resistance, points 15
19 to 38

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
1.9 to 2.3
Carbon (C), % 0.040 to 0.080
0
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 18 to 20
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 0
95.3 to 97.8
Iron (Fe), % 65.6 to 71.8
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 9.0 to 11
0 to 0.2
Nitrogen (N), % 0.12 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 1.0 to 2.0
0.2 to 0.35
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5