MakeItFrom.com
Menu (ESC)

EN 1.4821 Stainless Steel vs. EN AC-21100 Aluminum

EN 1.4821 stainless steel belongs to the iron alloys classification, while EN AC-21100 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4821 stainless steel and the bottom bar is EN AC-21100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 18
6.2 to 7.3
Fatigue Strength, MPa 280
79 to 87
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 730
340 to 350
Tensile Strength: Yield (Proof), MPa 450
210 to 240

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1410
670
Melting Onset (Solidus), °C 1370
550
Specific Heat Capacity, J/kg-K 490
880
Thermal Conductivity, W/m-K 17
130
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
100

Otherwise Unclassified Properties

Base Metal Price, % relative 15
11
Density, g/cm3 7.6
3.0
Embodied Carbon, kg CO2/kg material 2.9
8.0
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 160
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
19 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 500
300 to 400
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 26
46
Strength to Weight: Axial, points 26
31 to 33
Strength to Weight: Bending, points 23
36 to 37
Thermal Diffusivity, mm2/s 4.6
48
Thermal Shock Resistance, points 21
15

Alloy Composition

Aluminum (Al), % 0
93.4 to 95.7
Carbon (C), % 0.1 to 0.2
0
Chromium (Cr), % 24.5 to 26.5
0
Copper (Cu), % 0
4.2 to 5.2
Iron (Fe), % 64.2 to 71.1
0 to 0.19
Manganese (Mn), % 0 to 2.0
0 to 0.55
Nickel (Ni), % 3.5 to 5.5
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.8 to 1.5
0 to 0.18
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1