MakeItFrom.com
Menu (ESC)

EN 1.4823 Stainless Steel vs. 1100A Aluminum

EN 1.4823 stainless steel belongs to the iron alloys classification, while 1100A aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4823 stainless steel and the bottom bar is 1100A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 3.4
4.5 to 34
Fatigue Strength, MPa 130
35 to 74
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
26
Tensile Strength: Ultimate (UTS), MPa 620
89 to 170
Tensile Strength: Yield (Proof), MPa 290
29 to 150

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1400
640
Melting Onset (Solidus), °C 1360
640
Specific Heat Capacity, J/kg-K 490
900
Thermal Conductivity, W/m-K 17
230
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
60
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
200

Otherwise Unclassified Properties

Base Metal Price, % relative 16
9.5
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 3.0
8.2
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 170
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
6.4 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 200
5.9 to 150
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
50
Strength to Weight: Axial, points 23
9.1 to 17
Strength to Weight: Bending, points 21
16 to 25
Thermal Diffusivity, mm2/s 4.5
93
Thermal Shock Resistance, points 17
4.0 to 7.6

Alloy Composition

Aluminum (Al), % 0
99 to 100
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 25 to 28
0
Copper (Cu), % 0
0.050 to 0.2
Iron (Fe), % 60.9 to 70.7
0 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.5
0 to 0.050
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 3.0 to 6.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15