MakeItFrom.com
Menu (ESC)

EN 1.4823 Stainless Steel vs. 380.0 Aluminum

EN 1.4823 stainless steel belongs to the iron alloys classification, while 380.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4823 stainless steel and the bottom bar is 380.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
74
Elongation at Break, % 3.4
3.0
Fatigue Strength, MPa 130
140
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
28
Tensile Strength: Ultimate (UTS), MPa 620
320
Tensile Strength: Yield (Proof), MPa 290
160

Thermal Properties

Latent Heat of Fusion, J/g 320
510
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1400
590
Melting Onset (Solidus), °C 1360
540
Specific Heat Capacity, J/kg-K 490
870
Thermal Conductivity, W/m-K 17
100
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
83

Otherwise Unclassified Properties

Base Metal Price, % relative 16
10
Density, g/cm3 7.6
2.9
Embodied Carbon, kg CO2/kg material 3.0
7.5
Embodied Energy, MJ/kg 43
140
Embodied Water, L/kg 170
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
8.0
Resilience: Unit (Modulus of Resilience), kJ/m3 200
170
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
48
Strength to Weight: Axial, points 23
31
Strength to Weight: Bending, points 21
36
Thermal Diffusivity, mm2/s 4.5
40
Thermal Shock Resistance, points 17
14

Alloy Composition

Aluminum (Al), % 0
79.6 to 89.5
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 25 to 28
0
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 60.9 to 70.7
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.5
0 to 0.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 3.0 to 6.0
0 to 0.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
7.5 to 9.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.35
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.5