MakeItFrom.com
Menu (ESC)

EN 1.4823 Stainless Steel vs. 5040 Aluminum

EN 1.4823 stainless steel belongs to the iron alloys classification, while 5040 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4823 stainless steel and the bottom bar is 5040 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 3.4
5.7 to 6.8
Fatigue Strength, MPa 130
100 to 130
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
26
Tensile Strength: Ultimate (UTS), MPa 620
240 to 260
Tensile Strength: Yield (Proof), MPa 290
190 to 230

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1400
650
Melting Onset (Solidus), °C 1360
600
Specific Heat Capacity, J/kg-K 490
900
Thermal Conductivity, W/m-K 17
160
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
41
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
130

Otherwise Unclassified Properties

Base Metal Price, % relative 16
9.5
Density, g/cm3 7.6
2.8
Embodied Carbon, kg CO2/kg material 3.0
8.3
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 170
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
14 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 200
260 to 380
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
50
Strength to Weight: Axial, points 23
24 to 26
Strength to Weight: Bending, points 21
31 to 32
Thermal Diffusivity, mm2/s 4.5
64
Thermal Shock Resistance, points 17
10 to 11

Alloy Composition

Aluminum (Al), % 0
95.2 to 98
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 25 to 28
0.1 to 0.3
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 60.9 to 70.7
0 to 0.7
Magnesium (Mg), % 0
1.0 to 1.5
Manganese (Mn), % 0 to 1.5
0.9 to 1.4
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 3.0 to 6.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0 to 0.3
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15