MakeItFrom.com
Menu (ESC)

EN 1.4823 Stainless Steel vs. A360.0 Aluminum

EN 1.4823 stainless steel belongs to the iron alloys classification, while A360.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4823 stainless steel and the bottom bar is A360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 3.4
1.6 to 5.0
Fatigue Strength, MPa 130
82 to 150
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 620
180 to 320
Tensile Strength: Yield (Proof), MPa 290
170 to 260

Thermal Properties

Latent Heat of Fusion, J/g 320
530
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1400
680
Melting Onset (Solidus), °C 1360
590
Specific Heat Capacity, J/kg-K 490
900
Thermal Conductivity, W/m-K 17
110
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
100

Otherwise Unclassified Properties

Base Metal Price, % relative 16
9.5
Density, g/cm3 7.6
2.6
Embodied Carbon, kg CO2/kg material 3.0
7.8
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 170
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
4.6 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 200
190 to 470
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 26
53
Strength to Weight: Axial, points 23
19 to 34
Strength to Weight: Bending, points 21
27 to 39
Thermal Diffusivity, mm2/s 4.5
48
Thermal Shock Resistance, points 17
8.5 to 15

Alloy Composition

Aluminum (Al), % 0
85.8 to 90.6
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 25 to 28
0
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 60.9 to 70.7
0 to 1.3
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 1.5
0 to 0.35
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 3.0 to 6.0
0 to 0.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
9.0 to 10
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25