MakeItFrom.com
Menu (ESC)

EN 1.4823 Stainless Steel vs. C17510 Copper

EN 1.4823 stainless steel belongs to the iron alloys classification, while C17510 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4823 stainless steel and the bottom bar is C17510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 3.4
5.4 to 37
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 79
44
Tensile Strength: Ultimate (UTS), MPa 620
310 to 860
Tensile Strength: Yield (Proof), MPa 290
120 to 750

Thermal Properties

Latent Heat of Fusion, J/g 320
220
Maximum Temperature: Mechanical, °C 1100
220
Melting Completion (Liquidus), °C 1400
1070
Melting Onset (Solidus), °C 1360
1030
Specific Heat Capacity, J/kg-K 490
390
Thermal Conductivity, W/m-K 17
210
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
22 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
23 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 16
49
Density, g/cm3 7.6
8.9
Embodied Carbon, kg CO2/kg material 3.0
4.2
Embodied Energy, MJ/kg 43
65
Embodied Water, L/kg 170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
39 to 92
Resilience: Unit (Modulus of Resilience), kJ/m3 200
64 to 2410
Stiffness to Weight: Axial, points 15
7.4
Stiffness to Weight: Bending, points 26
18
Strength to Weight: Axial, points 23
9.7 to 27
Strength to Weight: Bending, points 21
11 to 23
Thermal Diffusivity, mm2/s 4.5
60
Thermal Shock Resistance, points 17
11 to 30

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.2 to 0.6
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 25 to 28
0
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0
95.9 to 98.4
Iron (Fe), % 60.9 to 70.7
0 to 0.1
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 3.0 to 6.0
1.4 to 2.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.5