MakeItFrom.com
Menu (ESC)

EN 1.4823 Stainless Steel vs. C92700 Bronze

EN 1.4823 stainless steel belongs to the iron alloys classification, while C92700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4823 stainless steel and the bottom bar is C92700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 3.4
9.1
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 620
290
Tensile Strength: Yield (Proof), MPa 290
150

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1400
980
Melting Onset (Solidus), °C 1360
840
Specific Heat Capacity, J/kg-K 490
370
Thermal Conductivity, W/m-K 17
47
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
11

Otherwise Unclassified Properties

Base Metal Price, % relative 16
35
Density, g/cm3 7.6
8.7
Embodied Carbon, kg CO2/kg material 3.0
3.6
Embodied Energy, MJ/kg 43
58
Embodied Water, L/kg 170
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
22
Resilience: Unit (Modulus of Resilience), kJ/m3 200
110
Stiffness to Weight: Axial, points 15
6.8
Stiffness to Weight: Bending, points 26
18
Strength to Weight: Axial, points 23
9.1
Strength to Weight: Bending, points 21
11
Thermal Diffusivity, mm2/s 4.5
15
Thermal Shock Resistance, points 17
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 25 to 28
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 60.9 to 70.7
0 to 0.2
Lead (Pb), % 0
1.0 to 2.5
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 3.0 to 6.0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 1.0 to 2.5
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 0.7
Residuals, % 0
0 to 0.7