MakeItFrom.com
Menu (ESC)

EN 1.4823 Stainless Steel vs. S39277 Stainless Steel

Both EN 1.4823 stainless steel and S39277 stainless steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4823 stainless steel and the bottom bar is S39277 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 3.4
28
Fatigue Strength, MPa 130
480
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 79
80
Tensile Strength: Ultimate (UTS), MPa 620
930
Tensile Strength: Yield (Proof), MPa 290
660

Thermal Properties

Latent Heat of Fusion, J/g 320
300
Maximum Temperature: Corrosion, °C 450
450
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1360
1410
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 17
16
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 16
23
Density, g/cm3 7.6
7.9
Embodied Carbon, kg CO2/kg material 3.0
4.2
Embodied Energy, MJ/kg 43
59
Embodied Water, L/kg 170
180

Common Calculations

PREN (Pitting Resistance) 27
43
Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
240
Resilience: Unit (Modulus of Resilience), kJ/m3 200
1070
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
25
Strength to Weight: Axial, points 23
33
Strength to Weight: Bending, points 21
27
Thermal Diffusivity, mm2/s 4.5
4.2
Thermal Shock Resistance, points 17
26

Alloy Composition

Carbon (C), % 0.3 to 0.5
0 to 0.025
Chromium (Cr), % 25 to 28
24 to 26
Copper (Cu), % 0
1.2 to 2.0
Iron (Fe), % 60.9 to 70.7
56.8 to 64.3
Manganese (Mn), % 0 to 1.5
0 to 0.8
Molybdenum (Mo), % 0 to 0.5
3.0 to 4.0
Nickel (Ni), % 3.0 to 6.0
6.5 to 8.0
Nitrogen (N), % 0
0.23 to 0.33
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 1.0 to 2.5
0 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.0020
Tungsten (W), % 0
0.8 to 1.2