MakeItFrom.com
Menu (ESC)

EN 1.4825 Stainless Steel vs. C41300 Brass

EN 1.4825 stainless steel belongs to the iron alloys classification, while C41300 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4825 stainless steel and the bottom bar is C41300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 17
2.0 to 44
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Tensile Strength: Ultimate (UTS), MPa 510
300 to 630
Tensile Strength: Yield (Proof), MPa 260
120 to 570

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 900
180
Melting Completion (Liquidus), °C 1410
1040
Melting Onset (Solidus), °C 1370
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
31

Otherwise Unclassified Properties

Base Metal Price, % relative 15
29
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 3.1
2.7
Embodied Energy, MJ/kg 43
44
Embodied Water, L/kg 140
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 72
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
69 to 1440
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 18
9.6 to 20
Strength to Weight: Bending, points 18
11 to 19
Thermal Diffusivity, mm2/s 4.0
40
Thermal Shock Resistance, points 12
11 to 22

Alloy Composition

Carbon (C), % 0.15 to 0.35
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
89 to 93
Iron (Fe), % 65.6 to 74.4
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 8.0 to 10
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.5 to 2.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.7 to 1.3
Zinc (Zn), % 0
5.1 to 10.3
Residuals, % 0
0 to 0.5