MakeItFrom.com
Menu (ESC)

EN 1.4826 Stainless Steel vs. C18400 Copper

EN 1.4826 stainless steel belongs to the iron alloys classification, while C18400 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4826 stainless steel and the bottom bar is C18400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 9.1
13 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Tensile Strength: Ultimate (UTS), MPa 500
270 to 490
Tensile Strength: Yield (Proof), MPa 260
110 to 480

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 950
200
Melting Completion (Liquidus), °C 1400
1080
Melting Onset (Solidus), °C 1360
1070
Specific Heat Capacity, J/kg-K 490
390
Thermal Conductivity, W/m-K 14
320
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
80
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
81

Otherwise Unclassified Properties

Base Metal Price, % relative 17
31
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 3.3
2.6
Embodied Energy, MJ/kg 47
41
Embodied Water, L/kg 160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39
63 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 170
54 to 980
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 18
8.5 to 15
Strength to Weight: Bending, points 18
10 to 16
Thermal Diffusivity, mm2/s 3.7
94
Thermal Shock Resistance, points 11
9.6 to 17

Alloy Composition

Arsenic (As), % 0
0 to 0.0050
Calcium (Ca), % 0
0 to 0.0050
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 21 to 23
0.4 to 1.2
Copper (Cu), % 0
97.2 to 99.6
Iron (Fe), % 60.4 to 68.7
0 to 0.15
Lithium (Li), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 9.0 to 11
0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 1.0 to 2.5
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.7
Residuals, % 0
0 to 0.5