MakeItFrom.com
Menu (ESC)

EN 1.4826 Stainless Steel vs. S33425 Stainless Steel

Both EN 1.4826 stainless steel and S33425 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4826 stainless steel and the bottom bar is S33425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 9.1
45
Fatigue Strength, MPa 140
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
79
Tensile Strength: Ultimate (UTS), MPa 500
580
Tensile Strength: Yield (Proof), MPa 260
230

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Maximum Temperature: Corrosion, °C 430
500
Maximum Temperature: Mechanical, °C 950
1100
Melting Completion (Liquidus), °C 1400
1430
Melting Onset (Solidus), °C 1360
1380
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 14
14
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 17
27
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 3.3
5.1
Embodied Energy, MJ/kg 47
71
Embodied Water, L/kg 160
190

Common Calculations

PREN (Pitting Resistance) 23
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 39
210
Resilience: Unit (Modulus of Resilience), kJ/m3 170
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
20
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 3.7
3.7
Thermal Shock Resistance, points 11
13

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0.3 to 0.5
0 to 0.080
Chromium (Cr), % 21 to 23
21 to 23
Iron (Fe), % 60.4 to 68.7
47.2 to 56.7
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 0 to 0.5
2.0 to 3.0
Nickel (Ni), % 9.0 to 11
20 to 23
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 1.0 to 2.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0
0.15 to 0.6