MakeItFrom.com
Menu (ESC)

EN 1.4826 Stainless Steel vs. S40920 Stainless Steel

Both EN 1.4826 stainless steel and S40920 stainless steel are iron alloys. They have 77% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4826 stainless steel and the bottom bar is S40920 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
150
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 9.1
22
Fatigue Strength, MPa 140
130
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
75
Tensile Strength: Ultimate (UTS), MPa 500
430
Tensile Strength: Yield (Proof), MPa 260
190

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Maximum Temperature: Corrosion, °C 430
450
Maximum Temperature: Mechanical, °C 950
710
Melting Completion (Liquidus), °C 1400
1450
Melting Onset (Solidus), °C 1360
1400
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 14
26
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 17
6.5
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 3.3
2.0
Embodied Energy, MJ/kg 47
28
Embodied Water, L/kg 160
94

Common Calculations

PREN (Pitting Resistance) 23
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 39
78
Resilience: Unit (Modulus of Resilience), kJ/m3 170
97
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
15
Strength to Weight: Bending, points 18
16
Thermal Diffusivity, mm2/s 3.7
6.9
Thermal Shock Resistance, points 11
15

Alloy Composition

Carbon (C), % 0.3 to 0.5
0 to 0.030
Chromium (Cr), % 21 to 23
10.5 to 11.7
Iron (Fe), % 60.4 to 68.7
85.1 to 89.4
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 9.0 to 11
0 to 0.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 1.0 to 2.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0
0.15 to 0.5