MakeItFrom.com
Menu (ESC)

EN 1.4828 Stainless Steel vs. C90900 Bronze

EN 1.4828 stainless steel belongs to the iron alloys classification, while C90900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4828 stainless steel and the bottom bar is C90900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
90
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 33
15
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 650
280
Tensile Strength: Yield (Proof), MPa 260
140

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 1000
160
Melting Completion (Liquidus), °C 1400
980
Melting Onset (Solidus), °C 1360
820
Specific Heat Capacity, J/kg-K 490
360
Thermal Conductivity, W/m-K 15
65
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
11

Otherwise Unclassified Properties

Base Metal Price, % relative 17
36
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 3.4
3.9
Embodied Energy, MJ/kg 48
64
Embodied Water, L/kg 150
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
35
Resilience: Unit (Modulus of Resilience), kJ/m3 170
89
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 23
8.8
Strength to Weight: Bending, points 22
11
Thermal Diffusivity, mm2/s 4.0
21
Thermal Shock Resistance, points 14
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 61.1 to 68.5
0 to 0.15
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 11 to 13
0 to 0.5
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.050
Silicon (Si), % 1.5 to 2.5
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
12 to 14
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.6