MakeItFrom.com
Menu (ESC)

EN 1.4832 Stainless Steel vs. EN 1.4458 Stainless Steel

Both EN 1.4832 stainless steel and EN 1.4458 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4832 stainless steel and the bottom bar is EN 1.4458 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
150
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 11
34
Fatigue Strength, MPa 140
150
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Tensile Strength: Ultimate (UTS), MPa 510
510
Tensile Strength: Yield (Proof), MPa 260
190

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Maximum Temperature: Corrosion, °C 420
430
Maximum Temperature: Mechanical, °C 950
1100
Melting Completion (Liquidus), °C 1400
1420
Melting Onset (Solidus), °C 1360
1370
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 14
16
Thermal Expansion, µm/m-K 16
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 19
30
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.6
5.4
Embodied Energy, MJ/kg 51
75
Embodied Water, L/kg 160
200

Common Calculations

PREN (Pitting Resistance) 21
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
140
Resilience: Unit (Modulus of Resilience), kJ/m3 170
89
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 18
18
Thermal Diffusivity, mm2/s 3.7
4.2
Thermal Shock Resistance, points 12
12

Alloy Composition

Carbon (C), % 0.15 to 0.35
0 to 0.030
Chromium (Cr), % 19 to 21
19 to 22
Copper (Cu), % 0
0 to 2.0
Iron (Fe), % 58.6 to 67.4
40.2 to 53
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 0 to 0.5
2.0 to 2.5
Nickel (Ni), % 13 to 15
26 to 30
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0.5 to 2.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.025