MakeItFrom.com
Menu (ESC)

EN 1.4833 Stainless Steel vs. AISI 441 Stainless Steel

Both EN 1.4833 stainless steel and AISI 441 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4833 stainless steel and the bottom bar is AISI 441 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 38
23
Fatigue Strength, MPa 200
180
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
77
Shear Strength, MPa 410
300
Tensile Strength: Ultimate (UTS), MPa 600
470
Tensile Strength: Yield (Proof), MPa 240
270

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 440
550
Maximum Temperature: Mechanical, °C 1000
910
Melting Completion (Liquidus), °C 1410
1440
Melting Onset (Solidus), °C 1370
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
23
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 19
13
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.5
2.8
Embodied Energy, MJ/kg 50
41
Embodied Water, L/kg 170
130

Common Calculations

PREN (Pitting Resistance) 24
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
92
Resilience: Unit (Modulus of Resilience), kJ/m3 140
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
17
Strength to Weight: Bending, points 20
17
Thermal Diffusivity, mm2/s 4.0
6.1
Thermal Shock Resistance, points 13
16

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.030
Chromium (Cr), % 22 to 24
17.5 to 19.5
Iron (Fe), % 58.7 to 66
76 to 82.2
Manganese (Mn), % 0 to 2.0
0 to 1.0
Nickel (Ni), % 12 to 14
0 to 1.0
Niobium (Nb), % 0
0.3 to 0.9
Nitrogen (N), % 0 to 0.1
0 to 0.030
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0
0.1 to 0.5