MakeItFrom.com
Menu (ESC)

EN 1.4833 Stainless Steel vs. EN 1.4588 Stainless Steel

Both EN 1.4833 stainless steel and EN 1.4588 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have 80% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4833 stainless steel and the bottom bar is EN 1.4588 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 38
34
Fatigue Strength, MPa 200
190
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
80
Tensile Strength: Ultimate (UTS), MPa 600
540
Tensile Strength: Yield (Proof), MPa 240
240

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 440
420
Maximum Temperature: Mechanical, °C 1000
1100
Melting Completion (Liquidus), °C 1410
1450
Melting Onset (Solidus), °C 1370
1410
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 19
33
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 3.5
6.2
Embodied Energy, MJ/kg 50
84
Embodied Water, L/kg 170
200

Common Calculations

PREN (Pitting Resistance) 24
44
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
150
Resilience: Unit (Modulus of Resilience), kJ/m3 140
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
18
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 13
11

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.020
Chromium (Cr), % 22 to 24
19 to 21
Copper (Cu), % 0
0.5 to 1.5
Iron (Fe), % 58.7 to 66
41.2 to 50.4
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 12 to 14
24 to 26
Nitrogen (N), % 0 to 0.1
0.1 to 0.25
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.020