MakeItFrom.com
Menu (ESC)

EN 1.4833 Stainless Steel vs. EN 1.4958 Stainless Steel

Both EN 1.4833 stainless steel and EN 1.4958 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have 81% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4833 stainless steel and the bottom bar is EN 1.4958 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 38
40
Fatigue Strength, MPa 200
170
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
77
Shear Strength, MPa 410
430
Tensile Strength: Ultimate (UTS), MPa 600
630
Tensile Strength: Yield (Proof), MPa 240
190

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 440
500
Maximum Temperature: Mechanical, °C 1000
1090
Melting Completion (Liquidus), °C 1410
1400
Melting Onset (Solidus), °C 1370
1350
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 16
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 19
30
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.5
5.3
Embodied Energy, MJ/kg 50
75
Embodied Water, L/kg 170
200

Common Calculations

PREN (Pitting Resistance) 24
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
190
Resilience: Unit (Modulus of Resilience), kJ/m3 140
95
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
22
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 4.0
3.2
Thermal Shock Resistance, points 13
15

Alloy Composition

Aluminum (Al), % 0
0.2 to 0.5
Carbon (C), % 0 to 0.15
0.030 to 0.080
Chromium (Cr), % 22 to 24
19 to 22
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 58.7 to 66
41.1 to 50.6
Manganese (Mn), % 0 to 2.0
0 to 1.5
Nickel (Ni), % 12 to 14
30 to 32.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.1
0 to 0.030
Phosphorus (P), % 0 to 0.045
0 to 0.015
Silicon (Si), % 0 to 1.0
0 to 0.7
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0.2 to 0.5