MakeItFrom.com
Menu (ESC)

EN 1.4835 Stainless Steel vs. AISI 317LN Stainless Steel

Both EN 1.4835 stainless steel and AISI 317LN stainless steel are iron alloys. They have a moderately high 94% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4835 stainless steel and the bottom bar is AISI 317LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 43
45
Fatigue Strength, MPa 310
250
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
79
Shear Strength, MPa 520
430
Tensile Strength: Ultimate (UTS), MPa 750
620
Tensile Strength: Yield (Proof), MPa 350
270

Thermal Properties

Latent Heat of Fusion, J/g 320
290
Maximum Temperature: Corrosion, °C 430
420
Maximum Temperature: Mechanical, °C 1150
1010
Melting Completion (Liquidus), °C 1400
1450
Melting Onset (Solidus), °C 1360
1400
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 15
14
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 17
21
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 3.3
4.3
Embodied Energy, MJ/kg 47
59
Embodied Water, L/kg 160
160

Common Calculations

PREN (Pitting Resistance) 24
33
Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
220
Resilience: Unit (Modulus of Resilience), kJ/m3 310
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27
22
Strength to Weight: Bending, points 24
20
Thermal Diffusivity, mm2/s 4.0
3.9
Thermal Shock Resistance, points 16
14

Alloy Composition

Carbon (C), % 0.050 to 0.12
0 to 0.030
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 20 to 22
18 to 20
Iron (Fe), % 62 to 68.4
57.9 to 67.9
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 10 to 12
11 to 15
Nitrogen (N), % 0.12 to 0.2
0.1 to 0.22
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 1.4 to 2.5
0 to 0.75
Sulfur (S), % 0 to 0.015
0 to 0.030