MakeItFrom.com
Menu (ESC)

EN 1.4835 Stainless Steel vs. EN 1.4958 Stainless Steel

Both EN 1.4835 stainless steel and EN 1.4958 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have 78% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4835 stainless steel and the bottom bar is EN 1.4958 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 43
40
Fatigue Strength, MPa 310
170
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 520
430
Tensile Strength: Ultimate (UTS), MPa 750
630
Tensile Strength: Yield (Proof), MPa 350
190

Thermal Properties

Latent Heat of Fusion, J/g 320
300
Maximum Temperature: Corrosion, °C 430
500
Maximum Temperature: Mechanical, °C 1150
1090
Melting Completion (Liquidus), °C 1400
1400
Melting Onset (Solidus), °C 1360
1350
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 17
30
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 3.3
5.3
Embodied Energy, MJ/kg 47
75
Embodied Water, L/kg 160
200

Common Calculations

PREN (Pitting Resistance) 24
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
190
Resilience: Unit (Modulus of Resilience), kJ/m3 310
95
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27
22
Strength to Weight: Bending, points 24
20
Thermal Diffusivity, mm2/s 4.0
3.2
Thermal Shock Resistance, points 16
15

Alloy Composition

Aluminum (Al), % 0
0.2 to 0.5
Carbon (C), % 0.050 to 0.12
0.030 to 0.080
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 20 to 22
19 to 22
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 62 to 68.4
41.1 to 50.6
Manganese (Mn), % 0 to 1.0
0 to 1.5
Nickel (Ni), % 10 to 12
30 to 32.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0.12 to 0.2
0 to 0.030
Phosphorus (P), % 0 to 0.045
0 to 0.015
Silicon (Si), % 1.4 to 2.5
0 to 0.7
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0.2 to 0.5