MakeItFrom.com
Menu (ESC)

EN 1.4835 Stainless Steel vs. EN 2.4878 Nickel

EN 1.4835 stainless steel belongs to the iron alloys classification, while EN 2.4878 nickel belongs to the nickel alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4835 stainless steel and the bottom bar is EN 2.4878 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 43
13 to 17
Fatigue Strength, MPa 310
400 to 410
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
78
Shear Strength, MPa 520
750 to 760
Tensile Strength: Ultimate (UTS), MPa 750
1210 to 1250
Tensile Strength: Yield (Proof), MPa 350
740 to 780

Thermal Properties

Latent Heat of Fusion, J/g 320
330
Maximum Temperature: Mechanical, °C 1150
1030
Melting Completion (Liquidus), °C 1400
1370
Melting Onset (Solidus), °C 1360
1320
Specific Heat Capacity, J/kg-K 490
460
Thermal Conductivity, W/m-K 15
11
Thermal Expansion, µm/m-K 17
12

Otherwise Unclassified Properties

Base Metal Price, % relative 17
80
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 3.3
10
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 160
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
150 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 310
1370 to 1540
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27
41 to 42
Strength to Weight: Bending, points 24
31
Thermal Diffusivity, mm2/s 4.0
2.8
Thermal Shock Resistance, points 16
37 to 39

Alloy Composition

Aluminum (Al), % 0
1.2 to 1.6
Boron (B), % 0
0.010 to 0.015
Carbon (C), % 0.050 to 0.12
0.030 to 0.070
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 20 to 22
23 to 25
Cobalt (Co), % 0
19 to 21
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 62 to 68.4
0 to 1.0
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 10 to 12
43.6 to 52.2
Niobium (Nb), % 0
0.7 to 1.2
Nitrogen (N), % 0.12 to 0.2
0
Phosphorus (P), % 0 to 0.045
0 to 0.010
Silicon (Si), % 1.4 to 2.5
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.0070
Tantalum (Ta), % 0
0 to 0.050
Titanium (Ti), % 0
2.8 to 3.2
Zirconium (Zr), % 0
0.030 to 0.070