MakeItFrom.com
Menu (ESC)

EN 1.4835 Stainless Steel vs. EN AC-43200 Aluminum

EN 1.4835 stainless steel belongs to the iron alloys classification, while EN AC-43200 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4835 stainless steel and the bottom bar is EN AC-43200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
60 to 88
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 43
1.1
Fatigue Strength, MPa 310
67
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 750
190 to 260
Tensile Strength: Yield (Proof), MPa 350
97 to 220

Thermal Properties

Latent Heat of Fusion, J/g 320
540
Maximum Temperature: Mechanical, °C 1150
170
Melting Completion (Liquidus), °C 1400
600
Melting Onset (Solidus), °C 1360
590
Specific Heat Capacity, J/kg-K 490
900
Thermal Conductivity, W/m-K 15
140
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
120

Otherwise Unclassified Properties

Base Metal Price, % relative 17
9.5
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 3.3
7.8
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 160
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
1.8 to 2.7
Resilience: Unit (Modulus of Resilience), kJ/m3 310
66 to 330
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 27
20 to 28
Strength to Weight: Bending, points 24
28 to 35
Thermal Diffusivity, mm2/s 4.0
59
Thermal Shock Resistance, points 16
8.8 to 12

Alloy Composition

Aluminum (Al), % 0
86.1 to 90.8
Carbon (C), % 0.050 to 0.12
0
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 20 to 22
0
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 62 to 68.4
0 to 0.65
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.55
Nickel (Ni), % 10 to 12
0 to 0.15
Nitrogen (N), % 0.12 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 1.4 to 2.5
9.0 to 11
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15