MakeItFrom.com
Menu (ESC)

EN 1.4835 Stainless Steel vs. N08535 Stainless Steel

Both EN 1.4835 stainless steel and N08535 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have 70% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4835 stainless steel and the bottom bar is N08535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 43
46
Fatigue Strength, MPa 310
220
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
80
Shear Strength, MPa 520
400
Tensile Strength: Ultimate (UTS), MPa 750
570
Tensile Strength: Yield (Proof), MPa 350
240

Thermal Properties

Latent Heat of Fusion, J/g 320
310
Maximum Temperature: Corrosion, °C 430
450
Maximum Temperature: Mechanical, °C 1150
1100
Melting Completion (Liquidus), °C 1400
1420
Melting Onset (Solidus), °C 1360
1370
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 15
13
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 17
36
Density, g/cm3 7.7
8.1
Embodied Carbon, kg CO2/kg material 3.3
6.3
Embodied Energy, MJ/kg 47
87
Embodied Water, L/kg 160
230

Common Calculations

PREN (Pitting Resistance) 24
36
Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
210
Resilience: Unit (Modulus of Resilience), kJ/m3 310
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27
20
Strength to Weight: Bending, points 24
19
Thermal Diffusivity, mm2/s 4.0
3.3
Thermal Shock Resistance, points 16
13

Alloy Composition

Carbon (C), % 0.050 to 0.12
0 to 0.030
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 20 to 22
24 to 27
Copper (Cu), % 0
0 to 1.5
Iron (Fe), % 62 to 68.4
29.4 to 44.5
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 10 to 12
29 to 36.5
Nitrogen (N), % 0.12 to 0.2
0
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 1.4 to 2.5
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.030