MakeItFrom.com
Menu (ESC)

EN 1.4845 Stainless Steel vs. C17510 Copper

EN 1.4845 stainless steel belongs to the iron alloys classification, while C17510 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4845 stainless steel and the bottom bar is C17510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 38
5.4 to 37
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 78
44
Shear Strength, MPa 410
210 to 500
Tensile Strength: Ultimate (UTS), MPa 600
310 to 860
Tensile Strength: Yield (Proof), MPa 240
120 to 750

Thermal Properties

Latent Heat of Fusion, J/g 310
220
Maximum Temperature: Mechanical, °C 1050
220
Melting Completion (Liquidus), °C 1400
1070
Melting Onset (Solidus), °C 1360
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
210
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
22 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
23 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 25
49
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 4.3
4.2
Embodied Energy, MJ/kg 61
65
Embodied Water, L/kg 190
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
39 to 92
Resilience: Unit (Modulus of Resilience), kJ/m3 140
64 to 2410
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 21
9.7 to 27
Strength to Weight: Bending, points 20
11 to 23
Thermal Diffusivity, mm2/s 4.0
60
Thermal Shock Resistance, points 14
11 to 30

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.2 to 0.6
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 24 to 26
0
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0
95.9 to 98.4
Iron (Fe), % 48.2 to 57
0 to 0.1
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 19 to 22
1.4 to 2.2
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.5
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Residuals, % 0
0 to 0.5