MakeItFrom.com
Menu (ESC)

EN 1.4845 Stainless Steel vs. C96700 Copper

EN 1.4845 stainless steel belongs to the iron alloys classification, while C96700 copper belongs to the copper alloys. They have a modest 22% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.4845 stainless steel and the bottom bar is C96700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 38
10
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 78
53
Tensile Strength: Ultimate (UTS), MPa 600
1210
Tensile Strength: Yield (Proof), MPa 240
550

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1050
310
Melting Completion (Liquidus), °C 1400
1170
Melting Onset (Solidus), °C 1360
1110
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 15
30
Thermal Expansion, µm/m-K 16
15

Otherwise Unclassified Properties

Base Metal Price, % relative 25
90
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 4.3
9.5
Embodied Energy, MJ/kg 61
140
Embodied Water, L/kg 190
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
99
Resilience: Unit (Modulus of Resilience), kJ/m3 140
1080
Stiffness to Weight: Axial, points 14
8.9
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21
38
Strength to Weight: Bending, points 20
29
Thermal Diffusivity, mm2/s 4.0
8.5
Thermal Shock Resistance, points 14
40

Alloy Composition

Beryllium (Be), % 0
1.1 to 1.2
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
62.4 to 68.8
Iron (Fe), % 48.2 to 57
0.4 to 1.0
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 2.0
0.4 to 1.0
Nickel (Ni), % 19 to 22
29 to 33
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.5
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0.15 to 0.35
Zirconium (Zr), % 0
0.15 to 0.35
Residuals, % 0
0 to 0.5