MakeItFrom.com
Menu (ESC)

EN 1.4848 Stainless Steel vs. 5252 Aluminum

EN 1.4848 stainless steel belongs to the iron alloys classification, while 5252 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4848 stainless steel and the bottom bar is 5252 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
68 to 75
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 9.0
4.5 to 11
Fatigue Strength, MPa 130
100 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
25
Tensile Strength: Ultimate (UTS), MPa 510
230 to 290
Tensile Strength: Yield (Proof), MPa 250
170 to 240

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1390
650
Melting Onset (Solidus), °C 1340
610
Specific Heat Capacity, J/kg-K 490
910
Thermal Conductivity, W/m-K 15
140
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
120

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 4.4
8.7
Embodied Energy, MJ/kg 63
160
Embodied Water, L/kg 200
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 150
210 to 430
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 18
23 to 30
Strength to Weight: Bending, points 18
31 to 36
Thermal Diffusivity, mm2/s 3.9
57
Thermal Shock Resistance, points 11
10 to 13

Alloy Composition

Aluminum (Al), % 0
96.6 to 97.8
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 24 to 27
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 45.4 to 55.7
0 to 0.1
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0 to 2.0
0 to 0.1
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 19 to 22
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0 to 0.080
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.1