MakeItFrom.com
Menu (ESC)

EN 1.4848 Stainless Steel vs. AISI 348 Stainless Steel

Both EN 1.4848 stainless steel and AISI 348 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4848 stainless steel and the bottom bar is AISI 348 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 9.0
41
Fatigue Strength, MPa 130
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
77
Tensile Strength: Ultimate (UTS), MPa 510
580
Tensile Strength: Yield (Proof), MPa 250
230

Thermal Properties

Latent Heat of Fusion, J/g 320
290
Maximum Temperature: Corrosion, °C 440
480
Maximum Temperature: Mechanical, °C 1100
940
Melting Completion (Liquidus), °C 1390
1430
Melting Onset (Solidus), °C 1340
1390
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 25
19
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.4
3.7
Embodied Energy, MJ/kg 63
54
Embodied Water, L/kg 200
150

Common Calculations

PREN (Pitting Resistance) 26
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
190
Resilience: Unit (Modulus of Resilience), kJ/m3 150
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
21
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 3.9
4.2
Thermal Shock Resistance, points 11
13

Alloy Composition

Carbon (C), % 0.3 to 0.5
0 to 0.080
Chromium (Cr), % 24 to 27
17 to 19
Cobalt (Co), % 0
0 to 0.2
Iron (Fe), % 45.4 to 55.7
63.8 to 74
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 19 to 22
9.0 to 13
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 1.0 to 2.5
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030
Tantalum (Ta), % 0
0 to 0.1