MakeItFrom.com
Menu (ESC)

EN 1.4848 Stainless Steel vs. C17510 Copper

EN 1.4848 stainless steel belongs to the iron alloys classification, while C17510 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4848 stainless steel and the bottom bar is C17510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 9.0
5.4 to 37
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
44
Tensile Strength: Ultimate (UTS), MPa 510
310 to 860
Tensile Strength: Yield (Proof), MPa 250
120 to 750

Thermal Properties

Latent Heat of Fusion, J/g 320
220
Maximum Temperature: Mechanical, °C 1100
220
Melting Completion (Liquidus), °C 1390
1070
Melting Onset (Solidus), °C 1340
1030
Specific Heat Capacity, J/kg-K 490
390
Thermal Conductivity, W/m-K 15
210
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
22 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
23 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 25
49
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 4.4
4.2
Embodied Energy, MJ/kg 63
65
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
39 to 92
Resilience: Unit (Modulus of Resilience), kJ/m3 150
64 to 2410
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 18
9.7 to 27
Strength to Weight: Bending, points 18
11 to 23
Thermal Diffusivity, mm2/s 3.9
60
Thermal Shock Resistance, points 11
11 to 30

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.2 to 0.6
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 24 to 27
0
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0
95.9 to 98.4
Iron (Fe), % 45.4 to 55.7
0 to 0.1
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 19 to 22
1.4 to 2.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.5