MakeItFrom.com
Menu (ESC)

EN 1.4849 Stainless Steel vs. 3005 Aluminum

EN 1.4849 stainless steel belongs to the iron alloys classification, while 3005 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4849 stainless steel and the bottom bar is 3005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
33 to 73
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 4.5
1.1 to 16
Fatigue Strength, MPa 120
53 to 100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Tensile Strength: Ultimate (UTS), MPa 480
140 to 270
Tensile Strength: Yield (Proof), MPa 250
51 to 240

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1020
180
Melting Completion (Liquidus), °C 1390
660
Melting Onset (Solidus), °C 1340
640
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 12
160
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 42
9.5
Density, g/cm3 8.0
2.8
Embodied Carbon, kg CO2/kg material 7.1
8.2
Embodied Energy, MJ/kg 100
150
Embodied Water, L/kg 200
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
2.2 to 18
Resilience: Unit (Modulus of Resilience), kJ/m3 160
18 to 390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 17
14 to 27
Strength to Weight: Bending, points 17
21 to 33
Thermal Diffusivity, mm2/s 3.2
64
Thermal Shock Resistance, points 11
6.0 to 12

Alloy Composition

Aluminum (Al), % 0
95.7 to 98.8
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 18 to 21
0 to 0.1
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 32.6 to 43.5
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 2.0
1.0 to 1.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 36 to 39
0
Niobium (Nb), % 1.2 to 1.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0 to 0.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15