MakeItFrom.com
Menu (ESC)

EN 1.4849 Stainless Steel vs. 6008 Aluminum

EN 1.4849 stainless steel belongs to the iron alloys classification, while 6008 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4849 stainless steel and the bottom bar is 6008 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 4.5
9.1 to 17
Fatigue Strength, MPa 120
55 to 88
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Tensile Strength: Ultimate (UTS), MPa 480
200 to 290
Tensile Strength: Yield (Proof), MPa 250
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 1020
180
Melting Completion (Liquidus), °C 1390
640
Melting Onset (Solidus), °C 1340
620
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 12
190
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 42
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 7.1
8.5
Embodied Energy, MJ/kg 100
160
Embodied Water, L/kg 200
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
24 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 160
76 to 360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 17
21 to 29
Strength to Weight: Bending, points 17
28 to 35
Thermal Diffusivity, mm2/s 3.2
77
Thermal Shock Resistance, points 11
9.0 to 13

Alloy Composition

Aluminum (Al), % 0
96.5 to 99.1
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 18 to 21
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 32.6 to 43.5
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0 to 2.0
0 to 0.3
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 36 to 39
0
Niobium (Nb), % 1.2 to 1.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0.5 to 0.9
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15