MakeItFrom.com
Menu (ESC)

EN 1.4849 Stainless Steel vs. 705.0 Aluminum

EN 1.4849 stainless steel belongs to the iron alloys classification, while 705.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4849 stainless steel and the bottom bar is 705.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
62 to 65
Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 4.5
8.4 to 10
Fatigue Strength, MPa 120
63 to 98
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Tensile Strength: Ultimate (UTS), MPa 480
240 to 260
Tensile Strength: Yield (Proof), MPa 250
130

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 1020
180
Melting Completion (Liquidus), °C 1390
640
Melting Onset (Solidus), °C 1340
610
Specific Heat Capacity, J/kg-K 480
890
Thermal Conductivity, W/m-K 12
140
Thermal Expansion, µm/m-K 15
24

Otherwise Unclassified Properties

Base Metal Price, % relative 42
9.5
Density, g/cm3 8.0
2.8
Embodied Carbon, kg CO2/kg material 7.1
8.4
Embodied Energy, MJ/kg 100
150
Embodied Water, L/kg 200
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
18 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 160
120 to 130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 17
24 to 26
Strength to Weight: Bending, points 17
31 to 32
Thermal Diffusivity, mm2/s 3.2
55
Thermal Shock Resistance, points 11
11

Alloy Composition

Aluminum (Al), % 0
92.3 to 98.6
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 18 to 21
0 to 0.4
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 32.6 to 43.5
0 to 0.8
Magnesium (Mg), % 0
1.4 to 1.8
Manganese (Mn), % 0 to 2.0
0 to 0.6
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 36 to 39
0
Niobium (Nb), % 1.2 to 1.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 3.3
Residuals, % 0
0 to 0.15