MakeItFrom.com
Menu (ESC)

EN 1.4849 Stainless Steel vs. A384.0 Aluminum

EN 1.4849 stainless steel belongs to the iron alloys classification, while A384.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4849 stainless steel and the bottom bar is A384.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
74
Elongation at Break, % 4.5
2.5
Fatigue Strength, MPa 120
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
28
Tensile Strength: Ultimate (UTS), MPa 480
330
Tensile Strength: Yield (Proof), MPa 250
170

Thermal Properties

Latent Heat of Fusion, J/g 320
550
Maximum Temperature: Mechanical, °C 1020
170
Melting Completion (Liquidus), °C 1390
610
Melting Onset (Solidus), °C 1340
510
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 12
96
Thermal Expansion, µm/m-K 15
21

Otherwise Unclassified Properties

Base Metal Price, % relative 42
11
Density, g/cm3 8.0
2.8
Embodied Carbon, kg CO2/kg material 7.1
7.5
Embodied Energy, MJ/kg 100
140
Embodied Water, L/kg 200
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 160
180
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 17
32
Strength to Weight: Bending, points 17
38
Thermal Diffusivity, mm2/s 3.2
39
Thermal Shock Resistance, points 11
15

Alloy Composition

Aluminum (Al), % 0
79.3 to 86.5
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
3.0 to 4.5
Iron (Fe), % 32.6 to 43.5
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 2.0
0 to 0.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 36 to 39
0 to 0.5
Niobium (Nb), % 1.2 to 1.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
10.5 to 12
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.35
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5