MakeItFrom.com
Menu (ESC)

EN 1.4849 Stainless Steel vs. EN AC-21100 Aluminum

EN 1.4849 stainless steel belongs to the iron alloys classification, while EN AC-21100 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4849 stainless steel and the bottom bar is EN AC-21100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 4.5
6.2 to 7.3
Fatigue Strength, MPa 120
79 to 87
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
27
Tensile Strength: Ultimate (UTS), MPa 480
340 to 350
Tensile Strength: Yield (Proof), MPa 250
210 to 240

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 1020
170
Melting Completion (Liquidus), °C 1390
670
Melting Onset (Solidus), °C 1340
550
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 42
11
Density, g/cm3 8.0
3.0
Embodied Carbon, kg CO2/kg material 7.1
8.0
Embodied Energy, MJ/kg 100
150
Embodied Water, L/kg 200
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
19 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 160
300 to 400
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 17
31 to 33
Strength to Weight: Bending, points 17
36 to 37
Thermal Diffusivity, mm2/s 3.2
48
Thermal Shock Resistance, points 11
15

Alloy Composition

Aluminum (Al), % 0
93.4 to 95.7
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
4.2 to 5.2
Iron (Fe), % 32.6 to 43.5
0 to 0.19
Manganese (Mn), % 0 to 2.0
0 to 0.55
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 36 to 39
0
Niobium (Nb), % 1.2 to 1.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0 to 0.18
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1