MakeItFrom.com
Menu (ESC)

EN 1.4849 Stainless Steel vs. EN AC-48100 Aluminum

EN 1.4849 stainless steel belongs to the iron alloys classification, while EN AC-48100 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4849 stainless steel and the bottom bar is EN AC-48100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
100 to 140
Elastic (Young's, Tensile) Modulus, GPa 190
76
Elongation at Break, % 4.5
1.1
Fatigue Strength, MPa 120
120 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
29
Tensile Strength: Ultimate (UTS), MPa 480
240 to 330
Tensile Strength: Yield (Proof), MPa 250
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 320
640
Maximum Temperature: Mechanical, °C 1020
170
Melting Completion (Liquidus), °C 1390
580
Melting Onset (Solidus), °C 1340
470
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 15
20

Otherwise Unclassified Properties

Base Metal Price, % relative 42
11
Density, g/cm3 8.0
2.8
Embodied Carbon, kg CO2/kg material 7.1
7.3
Embodied Energy, MJ/kg 100
130
Embodied Water, L/kg 200
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
2.3 to 3.6
Resilience: Unit (Modulus of Resilience), kJ/m3 160
250 to 580
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 17
24 to 33
Strength to Weight: Bending, points 17
31 to 38
Thermal Diffusivity, mm2/s 3.2
55
Thermal Shock Resistance, points 11
11 to 16

Alloy Composition

Aluminum (Al), % 0
72.1 to 79.8
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 32.6 to 43.5
0 to 1.3
Magnesium (Mg), % 0
0.25 to 0.65
Manganese (Mn), % 0 to 2.0
0 to 0.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 36 to 39
0 to 0.3
Niobium (Nb), % 1.2 to 1.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
16 to 18
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.25