MakeItFrom.com
Menu (ESC)

EN 1.4849 Stainless Steel vs. C96900 Copper-nickel

EN 1.4849 stainless steel belongs to the iron alloys classification, while C96900 copper-nickel belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.4849 stainless steel and the bottom bar is C96900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 4.5
4.5
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
45
Tensile Strength: Ultimate (UTS), MPa 480
850
Tensile Strength: Yield (Proof), MPa 250
830

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 1020
210
Melting Completion (Liquidus), °C 1390
1060
Melting Onset (Solidus), °C 1340
960
Specific Heat Capacity, J/kg-K 480
380
Thermal Expansion, µm/m-K 15
17

Otherwise Unclassified Properties

Base Metal Price, % relative 42
39
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 7.1
4.6
Embodied Energy, MJ/kg 100
72
Embodied Water, L/kg 200
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
38
Resilience: Unit (Modulus of Resilience), kJ/m3 160
2820
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 17
27
Strength to Weight: Bending, points 17
23
Thermal Shock Resistance, points 11
30

Alloy Composition

Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
73.6 to 78
Iron (Fe), % 32.6 to 43.5
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 2.0
0.050 to 0.3
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 36 to 39
14.5 to 15.5
Niobium (Nb), % 1.2 to 1.8
0 to 0.1
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0 to 0.3
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5