MakeItFrom.com
Menu (ESC)

EN 1.4852 Stainless Steel vs. AISI 444 Stainless Steel

Both EN 1.4852 stainless steel and AISI 444 stainless steel are iron alloys. They have 56% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4852 stainless steel and the bottom bar is AISI 444 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 4.6
23
Fatigue Strength, MPa 120
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Tensile Strength: Ultimate (UTS), MPa 490
470
Tensile Strength: Yield (Proof), MPa 250
310

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Corrosion, °C 620
580
Maximum Temperature: Mechanical, °C 1100
930
Melting Completion (Liquidus), °C 1380
1460
Melting Onset (Solidus), °C 1340
1420
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 13
23
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 41
15
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 6.9
3.4
Embodied Energy, MJ/kg 100
47
Embodied Water, L/kg 220
130

Common Calculations

PREN (Pitting Resistance) 26
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
95
Resilience: Unit (Modulus of Resilience), kJ/m3 160
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
17
Strength to Weight: Bending, points 18
17
Thermal Diffusivity, mm2/s 3.4
6.2
Thermal Shock Resistance, points 11
16

Alloy Composition

Carbon (C), % 0.3 to 0.5
0 to 0.025
Chromium (Cr), % 24 to 27
17.5 to 19.5
Iron (Fe), % 29.6 to 40.9
73.3 to 80.8
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
1.8 to 2.5
Nickel (Ni), % 33 to 36
0 to 1.0
Niobium (Nb), % 0.8 to 1.8
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 1.0 to 2.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8