MakeItFrom.com
Menu (ESC)

EN 1.4852 Stainless Steel vs. EN 1.4938 Stainless Steel

Both EN 1.4852 stainless steel and EN 1.4938 stainless steel are iron alloys. They have 51% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4852 stainless steel and the bottom bar is EN 1.4938 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 4.6
16 to 17
Fatigue Strength, MPa 120
390 to 520
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Tensile Strength: Ultimate (UTS), MPa 490
870 to 1030
Tensile Strength: Yield (Proof), MPa 250
640 to 870

Thermal Properties

Latent Heat of Fusion, J/g 330
270
Maximum Temperature: Corrosion, °C 620
390
Maximum Temperature: Mechanical, °C 1100
750
Melting Completion (Liquidus), °C 1380
1460
Melting Onset (Solidus), °C 1340
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 13
30
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 41
10
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 6.9
3.3
Embodied Energy, MJ/kg 100
47
Embodied Water, L/kg 220
110

Common Calculations

PREN (Pitting Resistance) 26
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 160
1050 to 1920
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
31 to 37
Strength to Weight: Bending, points 18
26 to 29
Thermal Diffusivity, mm2/s 3.4
8.1
Thermal Shock Resistance, points 11
30 to 35

Alloy Composition

Carbon (C), % 0.3 to 0.5
0.080 to 0.15
Chromium (Cr), % 24 to 27
11 to 12.5
Iron (Fe), % 29.6 to 40.9
80.5 to 84.8
Manganese (Mn), % 0 to 2.0
0.4 to 0.9
Molybdenum (Mo), % 0 to 0.5
1.5 to 2.0
Nickel (Ni), % 33 to 36
2.0 to 3.0
Niobium (Nb), % 0.8 to 1.8
0
Nitrogen (N), % 0
0.020 to 0.040
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 1.0 to 2.5
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.015
Vanadium (V), % 0
0.25 to 0.4