MakeItFrom.com
Menu (ESC)

EN 1.4852 Stainless Steel vs. EN 1.6368 Steel

Both EN 1.4852 stainless steel and EN 1.6368 steel are iron alloys. They have a modest 38% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4852 stainless steel and the bottom bar is EN 1.6368 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 4.6
18
Fatigue Strength, MPa 120
310 to 330
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 490
660 to 690
Tensile Strength: Yield (Proof), MPa 250
460 to 490

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 1100
410
Melting Completion (Liquidus), °C 1380
1460
Melting Onset (Solidus), °C 1340
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 13
40
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 41
3.4
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 6.9
1.7
Embodied Energy, MJ/kg 100
22
Embodied Water, L/kg 220
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
110
Resilience: Unit (Modulus of Resilience), kJ/m3 160
580 to 650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
23 to 24
Strength to Weight: Bending, points 18
21 to 22
Thermal Diffusivity, mm2/s 3.4
11
Thermal Shock Resistance, points 11
20

Alloy Composition

Aluminum (Al), % 0
0.015 to 0.040
Carbon (C), % 0.3 to 0.5
0 to 0.17
Chromium (Cr), % 24 to 27
0 to 0.3
Copper (Cu), % 0
0.5 to 0.8
Iron (Fe), % 29.6 to 40.9
95.1 to 97.2
Manganese (Mn), % 0 to 2.0
0.8 to 1.2
Molybdenum (Mo), % 0 to 0.5
0.25 to 0.5
Nickel (Ni), % 33 to 36
1.0 to 1.3
Niobium (Nb), % 0.8 to 1.8
0.015 to 0.045
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 1.0 to 2.5
0.25 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010