MakeItFrom.com
Menu (ESC)

EN 1.4852 Stainless Steel vs. EN 1.8821 Steel

Both EN 1.4852 stainless steel and EN 1.8821 steel are iron alloys. They have a modest 37% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4852 stainless steel and the bottom bar is EN 1.8821 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 4.6
25
Fatigue Strength, MPa 120
280
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 490
530
Tensile Strength: Yield (Proof), MPa 250
390

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1380
1460
Melting Onset (Solidus), °C 1340
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 13
49
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 41
2.3
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 6.9
1.6
Embodied Energy, MJ/kg 100
21
Embodied Water, L/kg 220
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
120
Resilience: Unit (Modulus of Resilience), kJ/m3 160
400
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
19
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 3.4
13
Thermal Shock Resistance, points 11
16

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.030
Carbon (C), % 0.3 to 0.5
0 to 0.14
Chromium (Cr), % 24 to 27
0
Iron (Fe), % 29.6 to 40.9
96.8 to 99.98
Manganese (Mn), % 0 to 2.0
0 to 1.6
Molybdenum (Mo), % 0 to 0.5
0 to 0.2
Nickel (Ni), % 33 to 36
0 to 0.5
Niobium (Nb), % 0.8 to 1.8
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 1.0 to 2.5
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.1