MakeItFrom.com
Menu (ESC)

EN 1.4852 Stainless Steel vs. EN 1.8875 Steel

Both EN 1.4852 stainless steel and EN 1.8875 steel are iron alloys. They have a modest 38% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4852 stainless steel and the bottom bar is EN 1.8875 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 4.6
19
Fatigue Strength, MPa 120
340
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 490
660
Tensile Strength: Yield (Proof), MPa 250
490

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 1100
420
Melting Completion (Liquidus), °C 1380
1460
Melting Onset (Solidus), °C 1340
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 13
39
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 41
3.2
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 6.9
1.8
Embodied Energy, MJ/kg 100
24
Embodied Water, L/kg 220
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
110
Resilience: Unit (Modulus of Resilience), kJ/m3 160
650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
23
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 3.4
10
Thermal Shock Resistance, points 11
19

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0.3 to 0.5
0 to 0.18
Chromium (Cr), % 24 to 27
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 29.6 to 40.9
93.6 to 100
Manganese (Mn), % 0 to 2.0
0 to 1.7
Molybdenum (Mo), % 0 to 0.5
0 to 0.7
Nickel (Ni), % 33 to 36
0 to 1.5
Niobium (Nb), % 0.8 to 1.8
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 1.0 to 2.5
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.0080
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.080
Zirconium (Zr), % 0
0 to 0.15