MakeItFrom.com
Menu (ESC)

EN 1.4852 Stainless Steel vs. SAE-AISI 8630 Steel

Both EN 1.4852 stainless steel and SAE-AISI 8630 steel are iron alloys. They have a modest 38% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4852 stainless steel and the bottom bar is SAE-AISI 8630 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
160 to 200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 4.6
12 to 24
Fatigue Strength, MPa 120
260 to 350
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 490
540 to 680
Tensile Strength: Yield (Proof), MPa 250
360 to 560

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 1100
410
Melting Completion (Liquidus), °C 1380
1460
Melting Onset (Solidus), °C 1340
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 13
39
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 41
2.6
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 6.9
1.5
Embodied Energy, MJ/kg 100
20
Embodied Water, L/kg 220
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
78 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 160
340 to 840
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
19 to 24
Strength to Weight: Bending, points 18
19 to 22
Thermal Diffusivity, mm2/s 3.4
10
Thermal Shock Resistance, points 11
18 to 23

Alloy Composition

Carbon (C), % 0.3 to 0.5
0.28 to 0.33
Chromium (Cr), % 24 to 27
0.4 to 0.6
Iron (Fe), % 29.6 to 40.9
96.8 to 97.9
Manganese (Mn), % 0 to 2.0
0.7 to 0.9
Molybdenum (Mo), % 0 to 0.5
0.15 to 0.25
Nickel (Ni), % 33 to 36
0.4 to 0.7
Niobium (Nb), % 0.8 to 1.8
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 1.0 to 2.5
0.15 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.040