MakeItFrom.com
Menu (ESC)

EN 1.4852 Stainless Steel vs. C82000 Copper

EN 1.4852 stainless steel belongs to the iron alloys classification, while C82000 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4852 stainless steel and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 4.6
8.0 to 20
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
45
Tensile Strength: Ultimate (UTS), MPa 490
350 to 690
Tensile Strength: Yield (Proof), MPa 250
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 330
220
Maximum Temperature: Mechanical, °C 1100
220
Melting Completion (Liquidus), °C 1380
1090
Melting Onset (Solidus), °C 1340
970
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 13
260
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
46

Otherwise Unclassified Properties

Base Metal Price, % relative 41
60
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 6.9
5.0
Embodied Energy, MJ/kg 100
77
Embodied Water, L/kg 220
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 160
80 to 1120
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 17
11 to 22
Strength to Weight: Bending, points 18
12 to 20
Thermal Diffusivity, mm2/s 3.4
76
Thermal Shock Resistance, points 11
12 to 24

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 24 to 27
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 0
95.2 to 97.4
Iron (Fe), % 29.6 to 40.9
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 33 to 36
0 to 0.2
Niobium (Nb), % 0.8 to 1.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5