MakeItFrom.com
Menu (ESC)

EN 1.4852 Stainless Steel vs. C84500 Brass

EN 1.4852 stainless steel belongs to the iron alloys classification, while C84500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4852 stainless steel and the bottom bar is C84500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
55
Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 4.6
28
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
39
Tensile Strength: Ultimate (UTS), MPa 490
240
Tensile Strength: Yield (Proof), MPa 250
97

Thermal Properties

Latent Heat of Fusion, J/g 330
180
Maximum Temperature: Mechanical, °C 1100
150
Melting Completion (Liquidus), °C 1380
980
Melting Onset (Solidus), °C 1340
840
Specific Heat Capacity, J/kg-K 480
360
Thermal Conductivity, W/m-K 13
72
Thermal Expansion, µm/m-K 16
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
16
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
17

Otherwise Unclassified Properties

Base Metal Price, % relative 41
28
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 6.9
2.9
Embodied Energy, MJ/kg 100
47
Embodied Water, L/kg 220
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
54
Resilience: Unit (Modulus of Resilience), kJ/m3 160
45
Stiffness to Weight: Axial, points 14
6.6
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 17
7.7
Strength to Weight: Bending, points 18
9.8
Thermal Diffusivity, mm2/s 3.4
23
Thermal Shock Resistance, points 11
8.6

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 24 to 27
0
Copper (Cu), % 0
77 to 79
Iron (Fe), % 29.6 to 40.9
0 to 0.4
Lead (Pb), % 0
6.0 to 7.5
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 33 to 36
0 to 1.0
Niobium (Nb), % 0.8 to 1.8
0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 1.0 to 2.5
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
2.0 to 4.0
Zinc (Zn), % 0
10 to 14
Residuals, % 0
0 to 0.7