MakeItFrom.com
Menu (ESC)

EN 1.4854 Stainless Steel vs. EN 1.8870 Steel

Both EN 1.4854 stainless steel and EN 1.8870 steel are iron alloys. They have a modest 39% of their average alloy composition in common, which, by itself, doesn't mean much. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4854 stainless steel and the bottom bar is EN 1.8870 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 45
21
Fatigue Strength, MPa 310
310
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 520
380
Tensile Strength: Ultimate (UTS), MPa 750
610
Tensile Strength: Yield (Proof), MPa 340
450

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 1170
410
Melting Completion (Liquidus), °C 1370
1460
Melting Onset (Solidus), °C 1330
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 11
39
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 34
2.8
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 5.7
1.7
Embodied Energy, MJ/kg 81
22
Embodied Water, L/kg 220
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
120
Resilience: Unit (Modulus of Resilience), kJ/m3 280
530
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 26
22
Strength to Weight: Bending, points 23
20
Thermal Diffusivity, mm2/s 2.9
10
Thermal Shock Resistance, points 18
18

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0.040 to 0.080
0 to 0.18
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 24 to 26
0 to 0.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 33.6 to 40.6
95.1 to 100
Manganese (Mn), % 0 to 2.0
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 34 to 36
0 to 1.0
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0.12 to 0.2
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 1.2 to 2.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.080
Zirconium (Zr), % 0
0 to 0.050